Ressourcenbild KRW Produkte Kugellager

Einseitig wirkende Axial-Rillenkugellager, bestehend aus Wellenscheibe, Gehäusescheibe und Kugelkranz, können hohe einseitig wirkende Axialkräfte aufnehmen, währenddessen radiale Lasten zu vermeiden sind. Sie eignen sich für hohe Drehzahlanforderungen und können mit einer sphärisch ausgeführten Wellenscheibe und einer zusätzlichen Gehäusescheibe Winkelfehler und Schiefstellungen ausgleichen. Einseitig wirkende Axial-Rillenkugellager sind nicht selbsthaltend, sodass Kugelkranz und Lagerscheiben unabhängig voneinander montiert werden können.

Abmessungen und Toleranzen

Axial-Rillenkugellager werden bei KRW standardmäßig entsprechend DIN 620-3 (Wälzlagertoleranzen) und ISO 199 (Axiallager – Maße und Toleranzen) in Normaltoleranz (PN) geliefert. Alle weiteren – davon abweichenden Toleranzklassen oder Sondertoleranzen – sind bei der Bestellung anzugeben.

Wälzlagertoleranzen

Normen

Die Hauptabmessungen der einseitig wirkenden Axial-Rillenkugellager sind nach ISO 104 (Wälzlager - Axiallager), DIN 616 (Wälzlager - Maßpläne) und DIN 711 (Axial-Rillenkugellager, einseitig wirkend) genormt.

Übersicht des Aufbaus eines Axial Rillenkugellagers

Lagerausführung

Einseitig wirkende Axial-Rillenkugellager sind zerlegbare, nicht selbsthaltende Lager. Sie können hohe, einseitig wirkende Axialkräfte aufnehmen, währenddessen radiale Lasten zu vermeiden sind. Um eine passgenaue Zentrierung der Scheiben garantieren zu können, wird die Wellenscheibe mit einer kleineren, geschliffenen Bohrung versehen. Die Bohrung der Gehäusescheibe ist etwas größer und wird gedreht. In Verbindung mit einer kugeligen Gehäusescheibe kann das Lager Winkelfehler und Schiefstellungen zwischen Welle und Gehäuse ausgleichen.

Lagerluft

Die Lagerluft bei Axial-Rillenkugellagern wird je nach Betriebsverhältnissen erst während des Einbaus eingestellt, wobei die temperaturabhängige Längenänderung der Umbauteile im Betrieb zu berücksichtigen ist.

Übersicht von KRW Wälzlagerkäfige

Käfig

Axial-Rillenkugellager sind bei KRW standardmäßig mit einem Messingmassivkäfig (Nachsetzzeichen: M) ausgestattet. Andere Käfigausführungen sind auf Nachfrage verfügbar oder werden anwendungsspezifisch ausgewählt und entsprechend am Lager gekennzeichnet.

Allgemeine Informationen zu Käfigen

Ausgleich von Winkelfehlern

Axial-Rillenkugellager mit ebener Gehäusescheibe (Reihe 512, 512, 513, 514 bzw. 523, 523) sind zum Ausgleich von Schiefstellungen ungeeignet. Schiefstellungen führen zu einem ungünstigen Abrollen der Kugeln und rufen im Lager Zusatzbeanspruchungen hervor, die die Gebrauchsdauer verringern.

Axial-Rillenkugellager mit kugeliger Gehäusescheibe (Reihe 532, 533 bzw. 543, 543) sind zum Ausgleich von Schiefstellungen zwischen Welle und Gehäuse aufgrund von Wellendurchbiegungen, Fluchtungsfehlern sowie Gehäuseverformungen gut geeignet.

 

Drehzahl

Die kinematische Grenzdrehzahl nG ist ein praxisbezogener mechanischer Grenzwert und basiert auf der mechanischen Betriebsfestigkeit des Wälzlagers in Abhängigkeit seiner Einbausituation und der Schmierung. Die Grenzdrehzahl darf auch unter optimalen Betriebsbedingungen ohne vorherige Rücksprache mit KRW nicht überschritten werden.

Die DIN ISO 15312 (Wälzlager - Thermische Bezugsdrehzahl) gibt für diese Lager keine thermische Bezugsdrehzahl nth an.

Zulässige Betriebstemperaturen

Die zulässige Betriebstemperatur eines Lagers ist durch Käfigmaterial, Maßstabilität der Lagerbauteile (Lagerscheiben und Wälzkörper) sowie den Schmierstoff begrenzt. KRW Lager sind standardmäßig bis 200°C maßstabilisiert (S1). Auf Anfrage liefert KRW ebenfalls Wälzlager für höhere Betriebstemperaturen.

Allgemeine Informationen zu Käfigwerkstoffen

Dimensionierung

Für dynamisch beanspruchte Lager

Die Lebensdauerformel nach ISO 281 L10 = (C/P)p für dynamisch beanspruchte Lager setzt eine äquivalente Belastung (P) aus konstanter Richtung und in konstanter Größe voraus. Zur Berechnung von P sind Berechnungsfaktoren und das Verhältnis aus axialer und radialer Belastung notwendig.

Dynamisch äquivalente Lagerbelastung Pa

Die dynamisch äquivalente Lagerbelastung lässt sich durch nachstehende Formel ermitteln:

Padynamisch äquivalente Belastung[kN]
Fadynamische axiale Kraft[kN]

 

Für statisch beanspruchte Lager

Bei sehr langsam drehenden Lagern (n x dm ≤ 4000 mm/min) verliert die dynamische Dimensionierung ihre Gültigkeit. Die statische Tragsicherheit S0 errechnet sich nach:

S0statische Tragsicherheit[-]
C0statische Tragzahl (aus der Lagertabelle)[kN]
P0 statisch äquivalente Lagerbelastung[kN]
nLagerdrehzahl[min-1]
dmmittlerer Lagerdurchmesser [dm = (D+d)/2][mm]

 

Statische Tragfähigkeit

Famaximale axiale statische Belastung[kN]

 

Axiale Mindestbelastung

Für den zuverlässigen Betrieb eines Wälzlagers wird eine Mindestbelastung benötigt. Wenn die Mindestbelastung unterschritten wird, kann Schlupf auftreten. Axiale Rillenkugellager sind ausschließlich durch eine axiale Mindestbelastung vor Schlupf geschützt. Die nachstehende Formel zeigt die Berechnung der axialen Mindestbelastung für axiale Rillenkugellager:

Fa,minaxiale Mindestbelastung[kN]
nmaxmaximale Betriebsdrehzahl[min-1]
AMinimallastfaktor (aus der Lagertabelle)[-]

Sollte dieser Wert unterschritten werden, ist Rücksprache mit der KRW Anwendungstechnik zu halten.

 


 

KRW Produkte und Service

KRW Produktdatenbank
Produktdatenbank
Mehr
KRW Techniker bei der Berechnung
Service und Engineering
Mehr
KRW Download
Download
Mehr